skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 7, 2026
  2. SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. 76Ge can ββ decay into three possible excited states of 76Se, with the emission of two or, if the neutrino is Majorana, zero neutrinos. None of these six transitions have yet been observed. The Majorana Demonstrator was designed to study ββ decay of 76Ge using a low background array of high purity germanium detectors. With 98.2 kg-y of isotopic exposure, the Demonstrator sets the strongest half-life limits to date for all six transition modes. For 2νββ to the 0+ state of 76Se, this search has begun to probe for the first time half-life values predicted using modern many-body nuclear theory techniques, setting a limit of T_1/2 > 1.5e24 y (90% CL). 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  4. Objective. Dynamic positron emission tomography (PET) imaging, which can provide information on dynamic changes in physiological metabolism, is now widely used in clinical diagnosis and cancer treatment. However, the reconstruction from dynamic data is extremely challenging due to the limited counts received in individual frame, especially in ultra short frames. Recently, the unrolled modelbased deep learning methods have shown inspiring results for low-count PET image reconstruction with good interpretability. Nevertheless, the existing model-based deep learning methods mainly focus on the spatial correlations while ignore the temporal domain. Approach. In this paper, inspired by the learned primal dual (LPD) algorithm, we propose the spatio-temporal primal dual network (STPDnet) for dynamic low-count PET image reconstruction. Both spatial and temporal correlations are encoded by 3D convolution operators. The physical projection of PET is embedded in the iterative learning process of the network, which provides the physical constraints and enhances interpretability. Main results. The experiments of both simulation data and real rat scan data have shown that the proposed method can achieve substantial noise reduction in both temporal and spatial domains and outperform the maximum likelihood expectation maximization, spatio-temporal kernel method, LPD and FBPnet. Significance. Experimental results show STPDnet better reconstruction performance in the low count situation, which makes the proposed method particularly suitable in whole-body dynamic imaging and parametric PET imaging that require extreme short frames and usually suffer from high level of noise. 
    more » « less
  5. We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of 20.6 6.3 + 7.1 counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with 3.9 σ significance. The result agrees with the predicted standard model of particle physics signal rate within 2 σ . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  6. Molecular clocks are the basis for dating the divergence between lineages over macroevolutionary timescales (~105to 108years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes display a clocklike behavior. This “epimutation clock” is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation clocks recapitulate known topologies and branching times of intraspecies phylogenetic trees in the self-fertilizing plantArabidopsis thalianaand the clonal seagrassZostera marina, which represent two major modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity. 
    more » « less